Accuracy of Doppler echocardiographic estimates of pulmonary artery pressures in a canine model of pulmonary hypertension

Lydia C. Soydan, DVMa, Heidi B. Kellihan, DVMa,\ast, Melissa L. Bates, PhDb,c, Rebecca L. Stepien, DVMa, Daniel W. Consigny, BAd, Alessandro Bellofiore, PhDe, Christopher J. Francois, MDd, Naomi C. Chesler, PhDe

a University of Wisconsin, School of Veterinary Medicine, Department of Medical Sciences (Cardiology), 2015 Linden Drive, Madison, WI 53706, USA
b University of Wisconsin, School of Medicine and Public Health, Department of Pediatrics and the John Rankin Laboratory of Pulmonary Medicine, 600 Highland Avenue, Madison, WI 53792, USA
c University of Iowa, Department of Health and Human Physiology, 225 S. Grand Avenue, Iowa City, IA 52242, USA
d University of Wisconsin, School of Medicine and Public Health, Department of Radiology, 600 Highland Avenue, Madison, WI 53792, USA
e University of Wisconsin, College of Engineering, Department of Biomedical Engineering, 1550 Engineering Dr., Madison, WI 53706, USA

Received 24 June 2014; received in revised form 10 October 2014; accepted 21 October 2014

KEYWORDS
Tricuspid regurgitation; Right heart catheterization; Right atrial pressure; Pulmonic regurgitation; Dog

Abstract Objectives: To compare noninvasive estimates of pulmonary artery pressure (PAP) obtained via echocardiography (ECHO) to invasive measurements of PAP obtained during right heart catheterization (RHC) across a range of PAP. To examine the accuracy of estimating right atrial pressure via ECHO (RAP\textsubscript{ECHO}) compared to RAP measured by RHC (RAP\textsubscript{RHC}), and determine if adding RAP\textsubscript{ECHO} improves the accuracy of noninvasive PAP estimations.

Animals: 14 healthy female beagle dogs.

* Corresponding author.
E-mail address: kellihanh@vetmed.wisc.edu (H.B. Kellihan).

http://dx.doi.org/10.1016/j.jvc.2014.10.004
1760-2734/© 2014 Elsevier B.V. All rights reserved.
Methods: Comparison of ECHO and RHC measures of PAP, both at normal PAP and increased PAP generated by microbead embolization.

Results: Noninvasive estimates of PAP were moderately but significantly correlated (r of 0.68–0.78; $p < 0.0006$) with invasive measurements of PAP. Wide variance was noted for all estimations, with increased variance at higher PAP. The addition of RAPECHO improved correlation and bias in all cases. RAPRHC was significantly correlated with RAPECHO ($r = 0.38$; $p = 0.04$) as estimated by the ellipse area method. Median RAPRHC was significantly different between 3 subjective assessments of right atrial size ($p = 0.037$).

Conclusions: Spectral Doppler assessments of tricuspid and pulmonic regurgitation are imperfect methods for predicting PAP as measured by catheterization despite an overall moderate correlation between invasive and noninvasive values. Noninvasive measurements may be better utilized as part of a comprehensive assessment of PAP in canine patients. RAPRHC appears best estimated based on subjective assessment of RA size. Including estimated RAPECHO in estimates of PAP improves the correlation and relatedness between noninvasive and invasive measures of PAP, but notable variability in accuracy of estimations persists.

© 2014 Elsevier B.V. All rights reserved.

Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECHO</td>
<td>echocardiography</td>
</tr>
<tr>
<td>EMB</td>
<td>embolization</td>
</tr>
<tr>
<td>dPAP_ECHO</td>
<td>diastolic pulmonary artery pressure estimated by echocardiography</td>
</tr>
<tr>
<td>dPAP_RHC</td>
<td>diastolic pulmonary artery pressure obtained by right heart catheterization</td>
</tr>
<tr>
<td>mPAP_ECHO</td>
<td>mean pulmonary artery pressure estimated by echocardiography</td>
</tr>
<tr>
<td>mPAP_RHC</td>
<td>mean pulmonary artery pressure obtained by right heart catheterization</td>
</tr>
<tr>
<td>PAP</td>
<td>pulmonary artery pressure</td>
</tr>
<tr>
<td>PAP_ECHO</td>
<td>pulmonary artery pressure obtained by echocardiography</td>
</tr>
<tr>
<td>PAP_RHC</td>
<td>pulmonary artery pressure obtained by right heart catheterization</td>
</tr>
<tr>
<td>PH</td>
<td>pulmonary hypertension</td>
</tr>
<tr>
<td>PR</td>
<td>pulmonic regurgitation</td>
</tr>
<tr>
<td>RA</td>
<td>right atrium</td>
</tr>
<tr>
<td>RA_size_subj</td>
<td>subjective right atrial size obtained by echocardiography</td>
</tr>
<tr>
<td>RAP</td>
<td>right atrial pressure</td>
</tr>
<tr>
<td>RAP_ECHO</td>
<td>right atrial pressure estimated by subjective right atrial size obtained by echocardiography</td>
</tr>
<tr>
<td>RAP_RHC</td>
<td>mean right atrial pressure obtained by right heart catheterization</td>
</tr>
<tr>
<td>RHC</td>
<td>right heart catheterization</td>
</tr>
<tr>
<td>RV</td>
<td>right ventricular</td>
</tr>
<tr>
<td>sPAP_ECHO</td>
<td>systolic pulmonary artery pressure estimated by echocardiography</td>
</tr>
<tr>
<td>sPAP_RHC</td>
<td>systolic pulmonary artery pressure obtained by right heart catheterization</td>
</tr>
<tr>
<td>TR</td>
<td>tricuspid regurgitation</td>
</tr>
</tbody>
</table>

Introduction

In veterinary patients, pulmonary hypertension (PH) may be caused by heartworm disease, left-sided heart disease resulting in elevated pulmonary venous pressure, chronic pulmonary diseases, congenital cardiac diseases causing pulmonary overcirculation, thromboembolism, or it may be idiopathic.1–9

The gold standard test for diagnosis of PH is right heart catheterization (RHC) and direct measurement of pulmonary arterial pressure (PAP). In veterinary patients, procedural costs, associated risks and lack of availability often preclude performing RHC. While echocardiography (ECHO) serves as a preliminary screening tool in human patients, it is often the only diagnostic modality employed in veterinary medicine when confirming
or excluding PH. Chronic moderate to severe PH, regardless of the underlying cause, results in characteristic echocardiographic changes to the right heart, including right ventricular (RV) concentric hypertrophy, RV dilation, changes in tricuspid and pulmonic blood flow and potentially, RV systolic dysfunction and failure.1,4,7,8,10–16 Anatomic and functional changes may occur as a result of the interaction of PH and other hemodynamic influences and cannot be used alone to reliably estimate PH severity. Accordingly, an accurate noninvasive method of estimating actual PAP is preferable to diagnose PH in clinical patients.

Recent studies in veterinary patients have used analysis of the tricuspid regurgitation (TR) jet velocity-derived pressure gradient and pulmonic regurgitation (PR) jet velocity-derived pressure gradient, with and without addition of right atrial pressure (RAP) estimates, to estimate systolic PAP (sPAP\textsubscript{ECHO}) and diastolic PAP (dPAP\textsubscript{ECHO}), respectively. In recent reports, in humans with PH, the correlation between peak TR pressure gradient as an estimate of sPAP and invasively measured PAP\textsubscript{RHC} is moderate to poor with a high degree of variability.11,17–21 Other echocardiographic criteria that have been identified as possible predictors of PH in people and dogs include systolic time intervals, pulse-wave Doppler assessment of pulmonary outflow velocity profile, tricuspid annular plane systolic excursion and tissue Doppler imaging.1,4,7,15,22–29 These measurements add information to the echocardiographic assessment of PH patients, but the relatively straightforward analysis of PAP through assessment of TR and PR jets remains clinically popular even though the limitations of this type of assessment are widely acknowledged.

The benefits of including RAP obtained by ECHO (RAP\textsubscript{ECHO}) in the TR or PR velocity-derived pressure gradient have also been investigated in the human literature, as the modified Bernoulli equation predicts the inclusion of RAP\textsubscript{ECHO} should increase the accuracy of the sPAP\textsubscript{ECHO} estimation. Despite this theoretical advantage, the reported effect of including RAP\textsubscript{ECHO} in the estimate of sPAP\textsubscript{ECHO} is variable, with several studies failing to consistently show improved correlation when employing this approach.18,21,30,31 In people, clinical assessment of the jugular veins and an echocardiographic assessment of inferior vena cava collapse are two methods commonly employed in estimating RAP\textsubscript{ECHO}. In the latter, the patient is instructed to sniff vigorously to decrease intrathoracic pressure and therefore minimize the influence of varying intrathoracic pressure seen during normal respiration. Both this method and jugular assessment are prone to inaccuracy and many investigators suspect this partially explains why adding RAP\textsubscript{ECHO} does not confer consistent benefit in PAP estimation.16,18,21,30,32,33

In veterinary patients, noninvasively determining RAP\textsubscript{ECHO} is even more challenging, owing to difficulties in assessing jugular veins and coordinating the respiratory cycle during echocardiography. Identifying a method for accurate estimation of RAP\textsubscript{ECHO} might increase the accuracy of noninvasively estimating PAP. This possibility has not been thoroughly evaluated in veterinary medicine. Right atrial (RA) size is presumably associated with RAP, and presents a potential tool for estimating RAP\textsubscript{ECHO} in veterinary patients. Unlike the more spherical left atrium, the RA is ellipsoid in shape and its area and volume are difficult to repeatedly and objectively measure using 2-dimensional imaging methods. As a result, subjective assessment of RA size (RA size\textsubscript{subj}) is more commonly reported and used for interpretation. In theory, objective or subjective measures of RA enlargement might provide a method of estimating RAP\textsubscript{ECHO} which may then improve noninvasive estimations of PAP.

Even though ECHO estimates of PAP are routinely used in clinical veterinary medicine,1,2,5–8,28,29 there have been no veterinary studies examining the accuracy of echocardiographically-estimated PAP in dogs. The objectives of this study were thus to compare noninvasive estimates of PAP obtained via ECHO to invasive measurements of PAP obtained by RHC in healthy beagles with experimentally-induced pulmonary hypertension. Additional study objectives were to examine the accuracy of estimating RAP via ECHO based on subjective and objective assessment of RA size, and to determine if adding estimated RAP\textsubscript{ECHO} would improve the accuracy of echocardiographically-estimated PAP\textsubscript{ECHO}. We hypothesized that a correlation between noninvasive estimations and invasive measurements would be present but poor. We also predicted that noninvasive estimation of RAP\textsubscript{ECHO} would be inaccurate and that including estimated RAP\textsubscript{ECHO} in PAP estimations would not improve the correlation with invasive measurements.

Materials and methods

Study population and procedural overview

Fourteen intact female beagles were prospectively enrolled in this study between July 2010 and July 2012. The median weight of these animals was 8.5 kg (range 6.8–12 kg), and they were all 1 year of age. All animals were concurrently enrolled in a
research project aimed at generating an acute embolization (EMB) model of PH, in which multiple polyvinyl alcohol microbeads injections into the right atrium were performed under general anesthesia. For additional details, see Bellofiore et al., 2013. After general anesthesia was induced, an initial ECHO was immediately performed. There was a 30 min delay between the initial ECHO and collection of RHC data. Embolization (EMB) was then performed and mean PAP (mPAP$_{RHC}$) intermittently measured by RHC until a target mPAP$_{RHC}$ was >30 mmHg (achieved in 7/16 dogs), at which point the next data collection point was reached and RHC and ECHO were again performed. The ECHO measurement following EMB occurred immediately following RHC, once the measurements remained static for a total of 10 min. Accordingly, two data collection points (normotensive at baseline and hypertensive after EMB) were obtained from each anesthetic procedure. For the purposes of this study, RHC data was compared with ECHO data only from the same data collection point (either when PAP pressures were normal at baseline or when they were increased following EMB). This provided comparison of RHC to ECHO across a range of normotensive and hypertensive PAP. Each subject contributed at least two data collection points, one at normal PAP and one at elevated PAP. Some animals underwent multiple EMB procedures on different dates and generated more than two data sets. In summary, the 14 dogs generated 33 pairs of measurements (RHC and ECHO) for analysis.

General anesthesia

General anesthesia was induced with intravenous propofol (10 mg/kg body weight) after intramuscular premedication (midazolam 0.1 mg/kg and hydromorphone 0.1 mg/kg). Following endotracheal intubation, the dogs were maintained during the procedure on isoflurane gas (1–3%) with 100% oxygen and were mechanically ventilated at 11 breaths/minute. Lactated Ringer’s solution was infused intravenously at a rate of 10 ml/kg/hr. The femoral and external jugular veins were catheterized for access to the right heart, delivery of microbeads, contrast injection for angiography and blood collection. Dogs receiving a single EMB were humanely euthanized after conclusion of data collection. Dogs scheduled to receive multiple EMB were either recovered from anesthesia or humanely euthanized at the end of the last procedure. All of the procedures were approved by the Institutional Animal Care and Use Committee of the University of Wisconsin–Madison.

Echocardiography

Echocardiography was performed by a board-certified cardiologist (HBK) on all animals both before and after EMB. Standard right parasternal long axis, right parasternal short axis and left apical views were obtained. Two-dimensional ECHO was used to evaluate chamber size and function, while color flow and spectral Doppler imaging were performed to assess valve regurgitation. The tricuspid valve was interrogated from multiple views, and continuous wave spectral Doppler imaging was used to measure peak TR velocity-determined pressure gradient for estimated sPAPECHO. Care was taken to align the TR jet as parallel to the plane of the ultrasound interrogation beam as possible. The pulmonic valve was similarly assessed and peak and end PR jet velocity-determined pressure gradients were measured for estimation of mPAPECHO and dPAPECHO, respectively. Views of the RA and RV were then optimized from the left-sided apical images for measurement of RA area. RA area was measured at the end of ventricular systole, when the RA was at its maximal size, in three separate ways. First, by tracing the inside border of the RA in this view, with RA area calculated; next by measuring RA height and width and using the standard equation for area of an ellipse: \[A = \pi \cdot (RA_h / 2) \cdot (RA_w / 2) \]; and finally by using the standard equation for calculating the volume of an ellipse: \[V = (4/3) \pi \cdot (RA_h / 2) \cdot (RA_w / 2) \cdot (RA_w / 2) \].

Subjective assessment of RA size (RA size$_{subj}$) was reported using the following scoring system: 0 = no enlargement, 1 = mild enlargement, 2 = moderate enlargement and 3 = severe enlargement, using multiple views from the right and left sides. Right atrial pressure (RAP$_{ECHO}$) was estimated subjectively using a method previously described by Kittleson, according to the following criteria: RAP$_{ECHO} = 5$ mmHg if the RA appears normal in size, RAP$_{ECHO} = 10$ mmHg if the RA appears enlarged but there is no evidence of right-sided heart failure present, and RAP$_{ECHO} = 15$ mmHg if the RA appears enlarged and there is evidence of right-sided heart failure present. All measurements were made by a board certified cardiologist (HBK). All measurements were performed in triplicate from three

1 Contour SE Microspheres, Boston Scientific, Natick, MA, USA.
2 Siemens/Acuson Cypress Plus Ultrasound, ultrasound probe 3–7 MHz, Siemens Medical Solutions, Erlangen D91052, Germany.
consecutive cardiac cycles, if possible, and averaged.

Right heart catheterization

All animals underwent RHC using a 7.5 French Swan-Ganz catheter with data collected before and after EMB. A fluid-filled pressure catheter was advanced through a femoral vein to the pulmonary artery. Systolic, diastolic and mean PAP (sPAP$_{RHC}$, dPAP$_{RHC}$, mPAP$_{RHC}$) were obtained; the catheter was then withdrawn into the RA, and RAP$_{RHC}$ measurements were obtained.

Embolization

A large bore catheter was advanced through an external jugular vein to the right atrium, where polyvinyl alcohol microbeads5 were repeatedly injected as previously described.34 Briefly, 2 mL of 700–900 μm beads were injected first, followed by one or more injections of 2–5 mL of 150–250 μm beads. Mean PAP$_{RHC}$ was intermittently measured and injections were continued until a goal mPAP$_{RHC}$ of >30 mmHg was reached.

Statistics

Right heart catheterization data, ECHO measurements (TR and PR), RA size calculations, RA size$_{subj}$ and RAP$_{ECHO}$ were tested for normality using the D’Agostino and Pearson omnibus test. The majority of the data was non-normally distributed; therefore, non-parametric analyses were used for analysis. ECHO-estimated pressures (sPAP$_{ECHO}$, dPAP$_{ECHO}$, mPAP$_{ECHO}$) were paired with the corresponding invasive RHC measurements and tested for correlation using a Spearman rho coefficient of correlation. If two indices were determined to be significantly correlated ($p < 0.05$), linear regression was then used to analyze their relationship. Animals were assigned 1 of 3 possible RAP$_{ECHO}$ values (5 mmHg, 10 mmHg or 15 mmHg) based on subjective assessment of atrial size.35 Since no animals were in right-sided congestive heart failure at the time of assessment, animals were allocated to only 2 of the proposed three RAP$_{ECHO}$ groups (5 mmHg and 10 mmHg). The median values for invasive PAP$_{RHC}$ were compared between these groups using a Mann–Whitney U test ($p < 0.05$). For analysis of RA size$_{subj}$, animals with a score of 2 ($n = 3$, moderate RA enlargement) and 3 ($n = 2$, severe RA enlargement) were combined into one group. Median values for RAP$_{RHC}$ were compared among the three RA size$_{subj}$ groups (no enlargement, mild enlargement, moderate/severe enlargement) using the Kruskal–Wallis test, followed by a post-hoc Dunn’s multiple comparisons test ($p < 0.05$).

Results

Pulmonary arterial pressure estimations

There were 33 data collection points available for analysis. In all cases, TR was of sufficient quality for interrogation. Only 21 of 33 data sets had PR of sufficient quantity and quality to permit interrogation. These 21 data sets were used to estimate mPAP$_{ECHO}$ and dPAP$_{ECHO}$. A summary of invasive and noninvasive estimates at baseline and post-EMB are presented in Table 1.

Estimated sPAP$_{ECHO}$, mPAP$_{ECHO}$, and dPAP$_{ECHO}$ were all significantly correlated with invasive measurements of sPAP$_{RHC}$, mPAP$_{RHC}$ and dPAP$_{RHC}$, respectively. Invasive dPAP$_{RHC}$ was better correlated with end PR velocity-determined pressure gradient than peak PR velocity-determined
pressure gradient. When RAP_ECHO was included, the correlation improved in all cases. A similar improvement in goodness of fit was observed when RAP_ECHO was included in the analysis. Summary statistics are outlined in Table 2. Selected data sets are displayed in Fig. 1.

Right atrial pressure and size estimations

Mean RAP values (RAPRHC) were available in 31 of 33 data sets and RAP was objectively estimated using 3 different methods (Table 2) in these dogs. RAPRHC was significant, albeit weakly, correlated with RA size as estimated by the ellipse area method. RAPRHC was not significantly correlated with the RA tracing method or RA ellipse volume method. Median RAPRHC (4 mmHg, range: 0–6 mmHg) for dogs subjectively classified as RAP_ECHO of 5 mmHg was mildly but significantly lower than median RAPRHC (5 mmHg, range:

Table 1	Summary of median and range for invasive measurements and noninvasive estimates of pulmonary artery pressure in 14 dogs at baseline and post-embolization. The number of comparisons (N) for each measurement is also shown.	
	Baseline pressure (mmHg)	Post-embolization pressure (mmHg)
	Median (range); N	Median (range); N
sPAPRHC	17 (10–22); 17	42 (13–77); 16
dPAPRHC	7 (0–18); 17	24 (4–54); 16
mPAPRHC	10 (4–20); 17	30 (9–63); 16
RAPRHC	4 (0–5); 17	5 (1–10); 14
Peak TR	11.3 (6–16.9); 17	34.1 (5.7–75.5); 16
Peak PR	3.2 (1.1–8.9); 12	11.8 (8.4–18.9); 9
End PR	1 (0.1–3.4); 12	4 (1.1–9.9); 9

sPAPRHC = systolic pulmonary artery pressure obtained by right heart catheterization; dPAPRHC = diastolic pulmonary artery pressure obtained by right heart catheterization; mPAPRHC = mean pulmonary artery pressure obtained by right heart catheterization; RAPECHO = right atrial pressure estimated by echocardiogram; RAPRHC = mean right atrial pressure obtained by right heart catheterization; TR = peak tricuspid regurgitation gradient; PR = pulmonic regurgitation gradient.

Table 2	Correlation and linear regression equations for invasive measurements and noninvasive estimates of pulmonary artery pressure and right atrial size.				
	Correlation (r)	95% confidence interval	p value	Linear regression (r^2)	Regression equation
sPAPRHC vs. TR	0.77	0.58–0.88	<0.0001	0.61	Y = 9.91 + 0.88x
sPAPRHC vs. (TR + RAP_ECHO)	0.78	0.58–0.89	<0.0001	0.66	Y = 5.48 + 0.83x
mPAPRHC vs. peak PR	0.68	0.35–0.87	0.0006	0.59	Y = 7.20 + 1.82x
mPAPRHC vs. (peak PR + RAP_ECHO)	0.69	0.36–0.87	0.0005	0.64	Y = 1.40 + 1.34x
dPAPRHC vs. peak PR	0.70	0.37–0.87	0.0004	0.57	Y = 3.94 + 1.54x
dPAPRHC vs. (peak PR + RAP_ECHO)	0.70	0.38–0.87	0.0004	0.61	Y = −0.86 + 1.15x
dPAPRHC vs. end PR	0.75	0.45–0.89	0.0001	0.48	Y = 7.00 + 2.85x
dPAPRHC vs. (end PR + RAP_ECHO)	0.79	0.54–0.92	<0.0001	0.66	Y = −3.99 + 2.00x
RAPRHC vs. RA area measured	0.31	−0.05–0.05	0.08	N/A	N/A
RAPRHC vs. RA area ellipse method	0.38	0.01–0.65	0.04	0.22	Y = 1.66 + 5.90x
RAPRHC vs. RA volume ellipse method	0.33	−0.03–0.62	0.07	N/A	N/A

sPAPRHC = systolic pulmonary artery pressure obtained by right heart catheterization; dPAPRHC = diastolic pulmonary artery pressure obtained by right heart catheterization; mPAPRHC = mean pulmonary artery pressure obtained by right heart catheterization; N/A = not applicable; RAP_ECHO = right atrial pressure estimated by echocardiogram; RAPRHC = mean right atrial pressure obtained by right heart catheterization; TR = peak tricuspid regurgitation gradient; PR = pulmonic regurgitation gradient; RA = right atrium.
1–10 mmHg) for dogs subjectively classified as RAPECHO of 10 mmHg (p = 0.015). There was a significant difference among the median RAPRHC in the 3 RA size_{subj} groups (normal: 4 mmHg, range: 0–6; mild: 5 mmHg, range: 4–6; moderate/severe: 8 mmHg, range: 1–10 mmHg) (p = 0.037). Post-test analysis failed to detect a significant difference between any 2 specific groups, likely due to the small number of animals in each group.

Table 3a Summarized receiver operating characteristic (ROC) data for the prediction of pulmonary hypertension.

<table>
<thead>
<tr>
<th>Cut-off (mmHg)</th>
<th>Se/Sp</th>
<th>AUC</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak TR to predict sPAP_{RHC} >30 mmHg</td>
<td>17.35</td>
<td>100%/100%</td>
<td>1.0</td>
</tr>
<tr>
<td>Peak TR + RAPECHO to predict sPAP_{RHC} >30 mmHg</td>
<td>24.85</td>
<td>100%/100%</td>
<td>1.0</td>
</tr>
<tr>
<td>Peak PR + RAPECHO to predict mPAP_{RHC} >25 mmHg</td>
<td>14.6</td>
<td>100%/100%</td>
<td>1.0</td>
</tr>
<tr>
<td>End PR + RAPECHO to predict dPAP_{RHC} >10 mmHg</td>
<td>7.3</td>
<td>84.6%/87.5%</td>
<td>0.92</td>
</tr>
</tbody>
</table>

sPAP_{RHC} = systolic pulmonary artery pressure obtained by right heart catheterization; dPAP_{RHC} = diastolic pulmonary artery pressure obtained by right heart catheterization; mPAP_{RHC} = mean pulmonary artery pressure obtained by right heart catheterization; RAPECHO = right atrial pressure estimated by echocardiogram; TR = peak tricuspid regurgitation gradient; PR = pulmonic regurgitation gradient; Se = sensitivity; Sp = specificity; AUC = area under the curve; CI = confidence interval.
Discussion

The findings in this study suggest that despite a statistically significant correlation between non-invasive estimates and invasive measurements of PAP, the relationship between the predicted and actual values is highly variable as evidenced by moderate correlation coefficients with wide confidence intervals. The highest correlation coefficients for prediction of PAP RHC were observed when estimates of RAPECHO were included; however, the actual difference in correlation was negligible suggesting little additional value in including estimates of RAPECHO in this study. In evaluating the relationship between peak TR gradient and sPAPRHC, noninvasive estimates of PAP appear to have increased variance when PAP is higher.

Our results are in agreement with many studies in human patients with PH. Several investigators have reported that using peak TR gradients as surrogates for invasive sPAPRHC measurements is prone to inaccuracy, both for the diagnosis of PH and for classifying its severity. Accurate noninvasive estimation requires the presence and identification of a regurgitant jet (TR or PR), proper orientation of the ultrasound beam parallel to the jet, and generation of a flow profile of sufficient quality to permit proper identification of peaks. In the case of PR, identification of an early diastolic peak and end diastolic velocity are both necessary. Improper orientation or incomplete profiles will tend towards underestimation of actual PAP. Additionally, the modified Bernoulli equation applies specifically to blood flowing through a tube with no or negligible frictional losses, traversing across a constant area orifice. Changes in orifice size during the cardiac cycle and the effects of severe regurgitation into large cardiac chambers have been cited as possible causes of underestimation when applying the Bernoulli equation to TR flow.

Right ventricular systolic dysfunction, a possible component of severe PH, may also reduce TR velocity, leading to underestimation of true sPAP. Overestimation of PAPRHC was also noted in our study. In the human literature, inaccuracy in estimating RAP by ECHO is well documented and discussed as the most likely source of overestimation, with underestimation of true RAP resulting in overestimation of sPAPRHC.

In our dogs, relatively large overestimations (in some...
cases > 15 mmHg) remained even after RAPECHO was added to the peak TR velocity-determined pressure gradient. In those animals where RAP was invasively measured, the median RAPRHC was 4.0 mmHg (range 0–10), and minor discrepancies between actual mean RAPRHC and RAPECHO would not explain the degree of overestimation observed in several subjects. Alternatively, technical errors such as inaccurate identification of peak regurgitant velocity on the spectral trace or the presence of localized regions of accelerated velocity or vortices within a regurgitant jet are potential sources of this error. Although invasive measurements are considered the gold standard for determining PAPRHC, catheter tip location, catheter obstruction, or signal dampening along the length of the extension set could potentially reduce the measured PAPRHC and predispose to overestimation.

Although ECHO and RHC were performed within 30 min of one another in this study, variation in hemodynamic parameters during the course of general anesthesia could also result in apparent under- or overestimation. Animals commonly develop progressive hypothermia and hypotension during the course of anesthesia. Echocardiography was performed prior to RHC in animals at the first data collection point, when PAP was normal,

Figure 2 Selected Bland–Altman analyses. Panel A shows sPAPRHC vs. peak TR gradient; Panel B shows sPAPRHC vs. peak TR gradient plus RAPECHO; Panel C shows mPAPRHC vs. peak PR gradient plus RAPECHO; Panel D shows dPAPRHC vs. end PR gradient plus RAPECHO. sPAPRHC = systolic pulmonary artery pressure obtained by right heart catheterization; dPAPRHC = diastolic pulmonary artery pressure obtained by right heart catheterization; mPAPRHC = mean pulmonary artery pressure obtained by right heart catheterization; RAPECHO = right atrial pressure estimated by echocardiogram; TR = peak tricuspid regurgitation gradient; PR = pulmonic regurgitation gradient.
potentially resulting in overestimation of noninvasive estimations among this data. After EMB, which generated elevated PAP, RHC was performed prior to ECHO, potentially resulting in underestimation of noninvasive estimations.

If the modified Bernoulli equation is applicable in the estimation of pressure differential across the tricuspid valve in patients with TR, adding RAP_{ECHO} to the TR velocity-derived pressure differential should provide a more accurate prediction of sPAP_{RHC}. Our findings did not support this theoretical improvement. Reports from the human literature are conflicting, with several studies failing to consistently show improved correlation when employing this approach. In this study, no objective method of assessing RA size was highly correlated to RAP_{RHC}, although there was a significant but weak correlation between RA area, as determined by the ellipse method. Ultimately, RA size$_{\text{subj}}$ or RAP_{ECHO}, the two methods employing subjective assessment of RA size, were significantly associated with RAP_{RHC}. The discriminatory ability of these predictors may be limited by the small range of RA (RHC and subjective) seen in this study. This suggests that RA size may be better evaluated subjectively and that RA size increases with increasing mean RAP_{RHC}. Although difficulties in accurately estimating RAP_{ECHO} have been cited as a potential source of error impacting non-invasively estimated PAP_{ECHO}, the difference between RAP_{ECHO} and actual RAP_{RHC} was low in this study, with a median difference of 1 mmHg (range 0–9 mmHg). This difference likely has minimal impact on noninvasive estimations, particularly in the case of $\text{sPAP}_{\text{ECHO}}$, where pressures are much higher than those of the right atrium.

An unexpected finding in our study was that a noninvasively estimated $\text{sPAP}_{\text{ECHO}} > 17.4$ mmHg (TR peak velocity > 2.1 m/sec) proved 100% sensitive and 100% specific for identifying animals with an $\text{sPAP}_{\text{RHC}} > 30$ mmHg, while a noninvasively estimated $\text{sPAP}_{\text{ECHO}} > 30.6$ mmHg (TR velocity > 2.8 m/sec) proved 100% sensitive and 76.76% specific for identifying animals with an invasive $\text{sPAP}_{\text{RHC}} > 60$ mmHg (Tables 3a and b). These are much lower cut-off values than are typically used in veterinary medicine to diagnose PH or estimate severity, and are consistent with the tendency for noninvasive estimations to underestimate actual sPAP_{RHC}. These lower than expected cut-off points may suggest that ECHO assessment leads to underdiagnosis of PH or misclassification of the severity of PH in many canine patients, at least in acute PH situations. The clinical significance of this error, if present in the actual canine population affected by more chronic PH, is unknown.

This study had several limitations. First, measurements were not performed simultaneously, so observed differences could be related to temporal variation in PAP. Significant hourly variation in PAP has been shown in awake human patients with PH, possibly due to variation in total pulmonary resistance associated with severe PH. Although this potential source of error was minimized in our animals by performing measurements within 30 min for the pre-EMB and immediately following RHC measurement stabilization for 10 min for post-EMB, systemic blood pressure was not closely monitored and controlled during the procedure. General anesthetic agents, particularly inhalant gases, are known to reduce systemic and pulmonary pressures. In addition, these animals were receiving 100% inhaled oxygen, which can impact systemic and pulmonary arterial tone and pressure. Although these factors may affect PAP, it is difficult to predict the effect of change of PAP over time on RHC and ECHO at any given time point. Second, measurements were performed on a population of dogs with acutely generated PH, via EMB. This model likely differs from that of chronic PH, where compensatory cardiac remodeling occurs. The impact of chronic versus acute cardiac changes on the predictive value of noninvasive estimates is unknown. Right ventricular systolic failure may play a role in either situation, resulting in a tendency towards underestimation of actual PH based on TR velocity. Right atrial size may not increase with an acute increase in RAP and chronicity may be necessary to increase RA size in the presence of chronic PH. Comparatively, Oyama et al. showed that an acute increase in left atrial pressure, as seen with acute mitral valve insufficiency, was not associated with a significant increase in left atrial size when assessed by ECHO.

This limitation of RA size assessment in the acute setting, in addition to the small range of RAP observed after EMB, are clear limitations for the clinical translation of the observed results. Finally, the range of PAP_{RHC} in this acute model of PH was limited, with all PAP <77 mmHg. The predictive value of noninvasive measures at higher pressures and in naturally occurring disease remains unknown.

Conclusions

The study reported here documented a correlation between ECHO estimates of PAP and RAP and invasively measured values. Our results also confirmed a
host of previous studies showing inconsistent predictive value of individual noninvasive measurements to predict invasive measurements of PAP and RAP. The results of this study suggest that employing more diagnostic modalities than ECHO alone may add important clinical information to the evaluation of canine patients with PH. Additional studies investigating ECHO measures of RV and pulmonary artery structure and function as indicators of existence and severity of PH are needed.

Conflict of interest
None.

Acknowledgments
The authors gratefully acknowledge funding support from NIH R01HL105598 (NCC) American Heart Association (postdoctoral fellowship, MLB) and Department of Radiology (CJF).

References

